Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(a) Ans.	Attempt any FIVE of the following :		(10)
		Define ductility and plasticity.		
		Ductility: It is the property of material to undergo a considerable deformation under tension before rupture.	1	
		Plasticity: The plasticity of a material is the ability to change its shape without destruction under the action of external loads and to regain the shape given to it when the forces are removed. OR Lack of elasticity is called as plasticity.	1	2
	(b) Ans.	Write mathematical expression of temperature stresses with meaning of each term. $\sigma_{t}=\alpha \times t \times E$	1	
		Where, $\begin{aligned} & \sigma_{t}=\text { Temperature Stress. }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ & \alpha=\text { Coefficient of linear expansion. }\left({ }^{\circ} \mathrm{C}\right) \\ & \mathrm{t}=\text { Change in Temperature. }\left({ }^{\circ} \mathrm{C}\right) \\ & \mathrm{E}=\text { Modulus of Elasticity. }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{aligned}$	1	2
	(c)	Calculate longitudinal stress developed in 2 cm diameter bar undergo tensile force of 120 kN .		
	Ans.	Data: $\mathrm{d}=2 \mathrm{~cm}, \mathrm{P}=120 \mathrm{kN}$ Find: σ $\sigma=\frac{\mathrm{P}}{\mathrm{~A}}$		
		$\sigma=\frac{120 \times 10^{3}}{\frac{\pi \times 20^{2}}{4}}$	1	
		$\sigma=381.97 \mathrm{~N} / \mathrm{mm}^{2}$ OUR CENTERS :	1	2

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Que. } \\
\& \text { No. } \\
\& \hline
\end{aligned}
\] \& Sub. Que. \& Model Answer \& Marks \& Total Marks \\
\hline Q. 2 \& \begin{tabular}{l}
(b) \\
(c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{K}=\sqrt{\frac{\mathrm{I}}{\mathrm{~A}}} \\
\& \mathrm{~K}=\sqrt{\frac{\pi \mathrm{d}^{4}}{\frac{64}{\pi \mathrm{~d}^{2}}}} \\
\& \mathrm{~K}=\sqrt{\frac{\frac{\pi \times 500^{4}}{\frac{64}{\pi \times 500^{2}}}}{4}} \\
\& \mathrm{~K}=\sqrt{\frac{3.068 \times 10^{9}}{196.35 \times 10^{3}}} \\
\& \mathrm{~K}=125 \mathrm{~mm}
\end{aligned}
\] \\
Calculate the moment of inertia about the base of composite lamina made up of a semicircle \(\mathbf{o f} 120 \mathrm{~mm}\) base diameter is removed from base of rectangle \(120 \mathrm{~mm} \times 500 \mathrm{~mm}\) such that lamina is symmetrical to Y - axis.
\[
\begin{aligned}
\text { M.I. of lamina } \& =(\text { M.I. of rectangle about base AB })-(\text { M.I. of semi circle about base AB) } \\
\& =\left(\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}\right)_{\mathrm{I}}-\left(\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}\right)_{\mathrm{II}} \\
\& =\left(\frac{\mathrm{bd}^{3}}{12}+(\mathrm{bd}) \times\left(\frac{\mathrm{d}}{2}\right)^{2}\right)-\left(0.11 \mathrm{R}^{4}+\left(\frac{\pi \mathrm{d}^{2}}{8}\right) \times\left(\frac{4 \mathrm{R}}{3 \pi}\right)^{2}\right)_{\mathrm{II}} \\
\& =\left(\frac{120 \times 500^{3}}{12}+(120 \times 500) \times\left(\frac{500}{2}\right)^{2}\right)_{\mathrm{I}}-\left(0.11 \times 60^{4}+\left(\frac{\pi \times 120^{2}}{8}\right) \times\left(\frac{4 \times 60}{3 \pi}\right)^{2}\right)_{\mathrm{II}} \\
\& =\left(5 \times 10^{9}\right)_{\mathrm{I}}+\left(5.09 \times 10^{6}\right)_{\mathrm{II}} \\
\& =4.99 \times 10^{9} \mathrm{~mm}^{4}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1 \& 4

4

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 2	(d) Ans.	Find centroidal moment of inertia about X-X axis of 'symmetrical I' section with flanges $200 \mathrm{~mm} \times 12 \mathrm{~mm}$ and web $10 \mathrm{~mm} \times 300 \mathrm{~mm}$. $\begin{aligned} & \mathrm{I}_{\mathrm{xx}}=\frac{\mathrm{BD}^{3}-\mathrm{bd}^{3}}{12} \\ & \mathrm{I}_{\mathrm{xx}}=\frac{200 \times 324^{3}-190 \times 300^{3}}{12} \\ & \mathrm{I}_{\mathrm{xx}}=139.37 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ $\begin{aligned} & \mathrm{I}_{\mathrm{Xx}}=\left(2\left(\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}\right)\right)_{\text {flange }}+\left(\frac{\mathrm{bd}^{3}}{12}\right)_{\text {web }} \\ & \mathrm{I}_{\mathrm{Xx}}=2\left(\frac{200 \times 12^{3}}{12}+(200 \times 12) \times 156^{2}\right)+\left(\frac{10 \times 300^{3}}{12}\right) \\ & \mathrm{I}_{\mathrm{Xx}}=139.37 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	1 1 1 1 OR 1 1 1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(b) (c) Ans.	$\begin{aligned} & \mathrm{d}^{2}=\frac{\mathrm{P}}{\left(\frac{\pi \sigma}{4}\right)} \\ & \mathrm{d}=\sqrt{\frac{\mathrm{P}}{\left(\frac{\pi \sigma}{4}\right)}} \\ & \mathrm{d}=\sqrt{\frac{25 \times 10^{3}}{\left(\frac{\pi \times 100}{4}\right)}} \\ & \mathrm{d}=17.84 \mathrm{~mm} \end{aligned}$ A square R.C.C. column of $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ in section with 8 steel bars of 20 mm diameter carries aload of 360 kN . Find the stresses induced in steel and concrete. Take modular ratio $=15$. Data: $A=300 \times 300 \mathrm{~mm}^{2}, \mathrm{~d}=20 \mathrm{~mm} \phi$ No. of steel bar $=8, \mathrm{P}=360 \mathrm{kN}, \mathrm{m}=15$ Find: $\sigma_{\mathrm{c}}, \sigma_{\mathrm{s}}$, $\mathrm{A}_{\mathrm{s}}=\mathrm{n} \times \frac{\pi}{4} \mathrm{~d}^{2}=8 \times \frac{\pi}{4} 20^{2}=2513.27 \mathrm{~mm}^{2}$ $\mathrm{A}_{\mathrm{c}}=\mathrm{A}_{\mathrm{g}}-\mathrm{A}_{\mathrm{s}}$ $\mathrm{A}_{\mathrm{c}}=300 \times 300-2513.27$ $\mathrm{A}_{\mathrm{c}}=87486.72 \mathrm{~mm}^{2}$ $\frac{\sigma_{\mathrm{s}}}{\sigma_{\mathrm{c}}}=m$ $\sigma_{\mathrm{s}}=\mathrm{m} \times \sigma_{\mathrm{c}}$ $\sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(c)	$\begin{aligned} & \mathrm{P}=\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{c}} \\ & \mathrm{P}=\sigma_{\mathrm{s}} \mathrm{~A}_{\mathrm{s}}+\sigma_{\mathrm{c}} \mathrm{~A}_{\mathrm{c}} \\ & 360 \times 10^{3}=\left(15 \sigma_{\mathrm{c}}\right) 2513.27+\sigma_{\mathrm{c}} 87486.72 \\ & 360 \times 10^{3}=(37699.11+87486.72) \sigma_{\mathrm{c}} \\ & \sigma_{\mathrm{c}}=2.876 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\mathrm{s}}=15 \sigma_{\mathrm{c}} \\ & \sigma_{\mathrm{s}}=15 \times 2.876 \\ & \sigma_{\mathrm{s}}=43.136 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A Compound bar having steel rod of dia. 35 mm and solid copper rod of dia. 20 mm and aluminum square rod of 10 mm is as shown in following figure. Find change in length of bar. Take modulus of elasticity $\mathbf{E s}=210 \mathrm{kN} / \mathrm{mm}^{2}, \mathbf{E c}=110 \mathrm{GPa}$ and $\mathrm{Eal}=70 \mathrm{GPa}$. Data: $\mathrm{Es}=210 \mathrm{kN} / \mathrm{mm}^{2}, \mathrm{Ec}=110 \mathrm{GPa}$ and $\mathrm{E}_{\mathrm{Al}}=70 \mathrm{GPa}$ Find: $\mathrm{P},{ }_{\delta \mathrm{L}}$ To find unknown force P , $\sum \mathrm{Fx}=0$ $-30+\mathrm{P}-5+10=0$ P-25=0 $\mathrm{P}=25 \mathrm{kN}$ To find forces acting on individual part of compound rod.	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4		Attempt any THREE of the following :		(12)
	(a)	A bar of 20 mm diameter is subjected to a pull of 45 kN . The measured extension on gauge length of 200 mm is 0.05 mm and change in diameter is $\mathbf{0 . 0 0 2 5 m m}$. Calculate the Poisson's ratio and the value of modulus of rigidity.		
	Ans.	Data: $\mathrm{d}=20 \mathrm{~mm}, \mathrm{~L}=200 \mathrm{~mm}, \delta \mathrm{~L}=0.05 \mathrm{~mm}, \delta \mathrm{~b}=0.0025 \mathrm{~mm}$		
		Find: μ, G		
		Calculate μ : $\mu=\frac{\text { Lateral Strain }}{\text { Linear Strain }}$	1	
		$\mu=\frac{(\delta d / d)}{\left(\delta_{I} / L\right)}$		
		$\begin{aligned} & \mu=\frac{(0.0025 / 20)}{(0.05 / 200)} \\ & \mu=0.5 \end{aligned}$	1	
		Calculate E: $\delta 1=\frac{\mathrm{PL}}{\mathrm{AE}}$		
		$\begin{aligned} & \mathrm{E}=\frac{\mathrm{PL}}{\mathrm{~A} \times \delta \mathrm{L}}=\frac{45 \times 10^{3}}{\frac{\pi}{4} \times 20^{2} \times 0.05}=572.957 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{E}=572.957 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1	
		Calculate G:		
		$\mathrm{E}=2 \mathrm{G}(1+\mu)$		
		$572.957 \times 10^{3}=2 \mathrm{G}(1+0.5)$		
		$\mathrm{G}=190.985 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(b) Ans. (c) Ans.	A steel flat $30 \mathrm{~mm} \times 15 \mathrm{~mm}$ and 2.8 m long is subjected to an axial pull of 58 kN , if $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\boldsymbol{\mu}=0.30$. Calculate volumetric strain and change in Volume. Data: $\mathrm{b}=30 \mathrm{~mm}, \mathrm{t}=15 \mathrm{~mm}, \mathrm{~L}=2.8 \mathrm{~m}, \mathrm{P}=58 \mathrm{kN}, \mathrm{E}=2.1 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$, $\mu=0.30$ Find: $\mathrm{e}_{\mathrm{v}}, \delta \mathrm{v}$ $\sigma=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{58 \times 10^{3}}{30 \times 15}=128.88 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{e}_{\mathrm{v}}=\frac{\sigma}{\mathrm{E}}(1-2 \mu)$ $e_{v}=\frac{128.88}{2.1 \times 10^{3}} \times(1-2 \times 0.30)$ $e_{v}=2.454 \times 10^{-4}$ To find δ_{v} $e_{v}=\frac{\delta_{v}}{\mathrm{~V}}$ $\delta_{v}=e_{v} \times V$ $\delta_{v}=2.454 \times 10^{-4} \times 2800 \times 30 \times 15$ $\delta_{\mathrm{v}}=309.204 \mathrm{~mm}^{3}$ Draw shear force and bending moment diagram for cantilever beam of 5 m span subjected to udl of $15 \mathrm{~N} / \mathrm{m}$ up to mid span from fixity. I) Reaction Calculation: $\begin{aligned} \sum \mathrm{Fy}=0 & \\ & +\mathrm{R}_{\mathrm{A}}-(15 \times 2.5)=0 \\ & \mathrm{R}_{\mathrm{A}}-37.5=0 \\ & \mathrm{R}_{\mathrm{A}}=37.5 \mathrm{kN} \end{aligned}$	1 1 1 1	(1)

			Marks	Total Marks

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(c) Ans.	A simple supported beam of span 6 m carries udl of $10 \mathrm{kN} / \mathrm{m}$ upto 2 m and couple of 5 kNm (clockwise) at 3 m respectively from left side support. Draw SFD and BMD with appropriate calculation. I) Reaction Calculation: $\begin{aligned} & \sum \mathrm{M}_{\mathrm{A}}=0 \\ & \mathrm{R}_{\mathrm{B}} \times 6=(10 \times 2) \times 1+5 \\ & \sum \mathrm{Fy}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=10 \times 2 \\ & \mathrm{R}_{\mathrm{A}}+4.17=20 \mathrm{kN} \end{aligned} \quad \therefore \mathrm{R}_{\mathrm{B}}=4.17 \mathrm{kN},$ II) SF Calculation: SF at $\mathrm{A}=+15.83 \mathrm{kN}$ $\begin{aligned} \mathrm{C} & =+15.83-(10 \times 2)=-4.17 \mathrm{kN} \\ \mathrm{~B}_{\mathrm{L}} & =-4.17 \mathrm{kN} \\ \mathrm{~B} & =-4.17+4.17=0 \mathrm{kN} \quad(\therefore \mathrm{ok}) \end{aligned}$ III) BM Calculation: BM at A and $\mathrm{B}=0 \quad(\because$ Support A and B is simple) $\begin{aligned} & \mathrm{C}=+15.83 \times 2-(10 \times 2) \times 1=+11.66 \mathrm{kN}-\mathrm{m} \\ & \mathrm{D}_{\mathrm{L}}=+15.83 \times 3-(10 \times 2) \times 2=+7.5 \mathrm{kN}-\mathrm{m} \\ & \mathrm{D}_{\mathrm{R}}=+15.83 \times 3-(10 \times 2) \times 2+5=+12.5 \mathrm{kN}-\mathrm{m} \end{aligned}$ IV) Maximum BM Calculation: $\begin{aligned} & \text { SF at } \mathrm{E}=0 \\ & \quad 15.83-10 x=0 \quad \therefore x=1.583 \mathrm{~m} \quad \text { from support } \mathrm{A} \\ & \mathrm{BM}_{\max }=+15.83 \times 1.583-(10 \times 1.583) \times 0.7915=+12.53 \mathrm{kN}-\mathrm{m} \end{aligned}$	1	

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(c) Ans.	Draw shear stress distribution along of beam for L section with 75 $x 12 \mathrm{~mm}$ in flange and $100 \times 15 \mathrm{~mm}$ in web carrying 60 kN shear force. Data: $\mathrm{W}=60 \mathrm{kN}$, Flange: $75 \mathrm{~mm} \times 12 \mathrm{~mm}$, Web; $100 \mathrm{~mm} \times 15 \mathrm{~mm}$. $\begin{aligned} & \mathrm{a}_{1}=15 \times 88=1320 \mathrm{~mm}^{2} \\ & \mathrm{a}_{2}=72 \times 12=900 \mathrm{~mm}^{2} \\ & \mathrm{a}_{1}+\mathrm{a}_{2}=1320+900=2220 \mathrm{~mm}^{2} \\ & y_{1}=\frac{88}{2}=44 \mathrm{~mm} \\ & y_{2}=88+\frac{12}{2}=94 \mathrm{~mm} \end{aligned}$ $\bar{Y}_{\text {base }}=\frac{\mathrm{a}_{1} \mathrm{y}_{1}+\mathrm{a}_{2} \mathrm{y}_{2}}{\mathrm{a}_{1}+\mathrm{a}_{2}}=\frac{(1320 \times 44)+(900 \times 94)}{2220}=64.27 \mathrm{~mm} \text { from base }$ $\mathrm{h}_{1}=64.27-\frac{88}{2}=20.27 \mathrm{~mm}$ $\mathrm{h}_{2}=23.73+\frac{12}{2}=29.73 \mathrm{~mm}$ $\mathrm{I}_{\mathrm{NA}}=(\mathrm{MI})_{\mathrm{I}}+(\mathrm{MI})_{\mathrm{II}}$ $\mathrm{I}_{\mathrm{NA}}=\left(\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}\right)_{\mathrm{I}}+\left(\mathrm{I}_{\mathrm{G}}+\mathrm{Ah}^{2}\right)_{\mathrm{II}}$ $\mathrm{I}_{\mathrm{NA}}=\left(\frac{\mathrm{bd}^{3}}{12}+(\mathrm{b} \times \mathrm{d}) \times \mathrm{h}^{2}\right)_{\mathrm{I}}+\left(\frac{\mathrm{bd}^{3}}{12}+(\mathrm{b} \times \mathrm{d}) \times \mathrm{h}^{2}\right)_{\mathrm{II}}$ $\mathrm{I}_{\mathrm{NA}}=\left(\frac{15 \times 88^{3}}{12}+(1320) \times(20.27)^{2}\right)_{\mathrm{I}}+\left(\frac{75 \times 12^{3}}{12}+(900) \times(29.73)^{2}\right)_{\mathrm{II}}$ $\mathrm{I}_{\mathrm{NA}}=(1394192.228)_{\mathrm{I}}+(806285.67)_{\mathrm{II}}$ $\mathrm{I}_{\mathrm{NA}}=2200477.838 \mathrm{~mm}^{4}$ $\mathrm{q}_{0}=0 \quad$ At top and bottom of section. $q=\frac{S A \bar{Y}}{b I}$	1	

Model Answer: Summer-2019
Subject: Mechanics of Structures

