

Subject: Mechanics of Structures

Sub. Code: 22303

Important Instructions to examiners:

Model Answer: Summer-2019

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que.	Sub.	Model Answer	Marks	Total Morks
$\frac{10.}{0.1}$	Que.	Attempt any FIVE of the following ·		(10)
¥	(a) Ans.	 Define ductility and plasticity. Ductility: It is the property of material to undergo a considerable deformation under tension before rupture. Plasticity: The plasticity of a material is the ability to change its shape without destruction under the action of external loads and to regain the shape given to it when the forces are removed. OR Lack of elasticity is called as plasticity. 	1	2
	(b) Ans.	Write mathematical expression of temperature stresses with meaning of each term. $\sigma_t = \alpha \times t \times E$ Where,	1	
		σ_r = Temperature Stress.(N/mm ²) α = Coefficient of linear expansion. (/°C) t = Change in Temperature.(°C) E = Modulus of Elasticity.(N/mm ²)	1	2
	(c)	Calculate longitudinal stress developed in 2 cm diameter bar undergo tensile force of 120 kN.		
	Ans.	Data: $d = 2 \text{ cm}, P = 120 \text{ kN}$ Find: σ $\sigma = \frac{P}{A}$		
		$\sigma = \frac{120 \times 10^3}{\frac{\pi \times 20^2}{4}}$	1	2
		$\sigma = 381.9'/\text{N/mm}^2$	I	4
		KALYAN DOMBIVLI THANE NERUL DADAR	Page	e No. 1 / 22

Contact - 9136008228

Model Answer: Summer-2019

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.1	(d) Ans.	Define and explain Bulk Modulus. Bulk Modulus : When a body is subjected to three mutually perpendicular like stresses of same intensity then the ratio of direct stress and the corresponding volumetric strain of the body is constant and is known as Bulk Modulus. It is denoted by K. S.I. Unit: N/m ² Or Pascal.	1	
			1	2
	(e) Ans.	Bulk Modulus (K) = $\frac{\text{Direct Stress}}{\text{Volumetric Strain}} = \frac{\sigma}{e_v}$ State any four types of beam. i. Simply supported beam. ii. Cantilever beam. iii. Fixed beam. iv. Overhanging beam. v. Continuous beam	¹ / ₂ each (any four)	2
	(f)	State the position of maximum shear stress and bending stress in S/S rectangular beam section carrying udl.		
	Ans.	i. Maximum shear stress developed at the neutral axis of the rectangular section at support of simply supported beam.	1	
		ii. Maximum bending stress developed at the top and bottom fibre of the rectangular section at mid span of simply supported beam.	1	2
	(g)	Define effective length in column with its application.		
	Ans.	Effective Length: The length of the column which bends or deflects as if it is hinged at its ends is called as effective length. It is denoted by Le.	1	
		Application: It is used in Rankine's and Euler's formula to determine buckling load on column.	1	2

Model Answer: Summer-2019

Sub. Code: 22303

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2		Attempt any <u>THREE</u> of the following :		(12)
	(a) Ans.	Define 'Moment of inertia' and write mathematical expression of square and quarter circle with both axis. Moment of inertia of a body about any axis is equal to the product of the area of the body and square of the distance of its centroid from that axis. OR	2	
		Moment of inertia of a body about any axis is defined as the sum of		
		second moment of all elementary areas about that axis. Unit- mm^4 , cm^4 , m^4		
		$bd^3 b^4$	1	
		Mi for Square = $I_{xx} = I_{yy} = \frac{12}{12} = \frac{12}{12}$	1	4
		MI for Quarter Circle = $I_{xx} = I_{yy} = 0.055 R^4$		
	(b)	Define 'radius of gyration' and state its application. Calculate radius of gyration for circular lamina of diameter 500mm.		
	Ans.	Data: d = 500mm Calculate: K		
		Radius of gyration (K): The radius of gyration of a given area about any axis is the distance from the given axis at which the area is assumed to be concentrated without changing the MI about the given axis. $K = \sqrt{\frac{I}{A}}$	1	
		Where, I = Moment of Inertia (mm ⁴) A = Cross Sectional Area (mm ²) K = Radius of Gyration. (mm)		
		Application: It is used in Euler's formula to determine buckling load on long column.	1	

Subject: Mechanics of Structures

Sub. Code: 22303

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Sub. Code: 22303

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.2	(d)	Find centroidal moment of inertia about X-X axis of 'symmetrical		
		1' section with flanges 200mm x 12 mm and web 10 mm x 300 mm.		
	Ans.			
		12mm Flange		
		300mm	1	
		$X \xrightarrow{\forall + \cdots } \downarrow \downarrow$		
		ŶŶ		
		- BD ³ -bd ³		
		$I_{xx} = \frac{12}{12}$	1	
		$I_{xx} = \frac{200 \times 324^3 - 190 \times 300^3}{12}$	1	
		$I_{xx} = 139.37 \times 10^6 \text{ mm}^4$	1	
		OR	OR	4
		(bd^3)		
		$I_{XX} = (2(I_G + Ah^2))_{\text{flange}} + (\frac{12}{12})_{\text{web}}$		
		$I = -2\left(\frac{200 \times 12^{3}}{100 \times 12}\right) \times 156^{2} + \left(\frac{10 \times 300^{3}}{100 \times 12}\right)$	1	
		12 12 $(200 \times 12) \times 150$ (12)		
		$I_{xx} = 139.37 \times 10^6 \text{mm}^4$	1	

OUR CENTERS : KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Model Answer: Summer-2019

Subject: Mechanics of Structures

Subject: Mechanics of Structures

.

Subject: Mechanics of Structures

Sub. Code: 22303

E

1 1 1 P

ENGINEERING

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.3	(c)	$P=P_{s}+P_{c}$ $P=\sigma_{s}A_{s}+\sigma_{c}A_{c}$ $360\times10^{3} = (15\sigma_{c})2513.27+\sigma_{c}87486.72$	1	
		$360 \times 10^{3} = (37699.11 + 87486.72)\sigma_{c}$ $\sigma_{c} = 2.876 \text{N/mm}^{2}$	1	
		$\sigma_{s} = 15\sigma_{c}$ $\sigma_{s} = 15 \times 2.876$ $\sigma_{s} = 43.136 \text{N/mm}^{2}$	1	4
	(d)	A Compound bar having steel rod of dia. 35 mm and solid copper rod of dia. 20mm and aluminum square rod of 10 mm is as shown in following figure. Find change in length of bar. Take modulus of elasticity $Es = 210 \text{ kN/mm}^2$, $Ec = 110 \text{ GPa}$ and $Eal = 70\text{GPa}$.		
		$30 \text{ kN} \xleftarrow{\text{Steel}} 1.2 \text{ m} \xrightarrow{\text{Steel}} 1 \text{ m} \xrightarrow{\text{Copper}} 4 \text{luminium} \\ 1.2 \text{ m} \xrightarrow{\text{Steel}} 1 \text{ m} \xrightarrow{\text{SkN}} 0.8 \text{ m} \xrightarrow{\text{SkN}} 1 \text{ m} 1 \text{ m} \xrightarrow{\text{SkN}} 1 \text{ m} \xrightarrow{\text{SkN}} 1 \text{ m} 1 \text{ m} \xrightarrow{\text{SkN}} 1 \text{ m} 1 \text{ m} \xrightarrow{\text{SkN}} 1 \text{ m} 1 $		
	Ans.	Data: Es= 210 kN/mm ² , Ec= 110 GPa and $E_{Al} = 70$ GPa Find: P, δL		
		To find unknown force P,		
		$\Sigma Fx=0$		
		-30+P-5+10=0		
		P-25=0	1	
		P=25KN To find forces acting on individual part of compound rod.		

Subject: Mechanics of Structures

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4		Attempt any <u>THREE</u> of the following :		(12)
	(a)	A bar of 20 mm diameter is subjected to a pull of 45 kN. The measured extension on gauge length of 200 mm is 0.05 mm and change in diameter is 0.0025mm. Calculate the Poisson's ratio and the value of modulus of rigidity.		
	Ans.	Data: d= 20 mm, L=200mm, δL=0.05mm, , δb= 0.0025mm Find: μ , G Calculate μ:		
		$\mu = \frac{Lateral Strain}{Linear Strain}$	1	
		$\mu = \frac{(\delta d / d)}{(\delta_L / L)}$ $\mu = \frac{(0.0025/20)}{(0.05/200)}$		
		$\mu = 0.5$ Calculate E:	1	
		$\delta l = \frac{12}{AE}$ $E = \frac{PL}{A \times \delta L} = \frac{45 \times 10^3}{\frac{\pi}{4} \times 20^2 \times 0.05} = 572.957 \times 10^3 \text{ N/mm}^2$		
		$E=572.957\times10^3$ N/mm ²	1	
		Calculate G:		
		$E=2G(1+\mu)$		
		$572.957 \times 10^3 = 2G(1+0.5)$		
		G=190.985 x 10 ³ N/mm ²	1	4

Model Answer: Summer-2019

Sub. Code: 22303

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	(b)	A steel flat 30 mm x 15 mm and 2.8 m long is subjected to an axial pull of 58 kN, if $E = 2 \times 10^5 N/mm^2$ and $\mu = 0.30$. Calculate volumetric strain and change in Volume.		
	Ans.	Data: b=30mm, t=15mm, L=2.8m, P=58 kN, E=2.1x10 ³ N/mm ² , μ =0.30 Find: e_v , δv		
		$\sigma = \frac{P}{A} = \frac{58 \times 10^3}{30 \times 15} = 128.88 \text{N/mm}^2$	1	
		$e_v = \frac{\sigma}{E} (1-2\mu)$ 128.88	1	
		$e_v = \frac{1}{2.1 \times 10^3} \times (1-2 \times 0.30)$ $e_v = 2.454 \times 10^4$	1	
		To find δ_v $e_v = \frac{\delta_v}{V}$		
		δv = ev × V δv = 2.454 × 10-4 × 2800 × 30 × 15 δv = 309.204 mm3	1	4
	(c)	Draw shear force and bending moment diagram for cantilever beam of 5 m span subjected to udl of 15 N/m up to mid span from		
	Ans.	fixity. $A = \frac{15 \text{ N/m}}{C} B$		
		I) Reaction Calculation:		
		$\sum Fy = 0 +R_{A}-(15 \times 2.5)=0 R_{A}-37.5=0 R_{A}=37.5 \text{kN}$		

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	(c)	II) SF Calculation: SF at $A = +37.5 \text{kN}$ $C = +37.5 - (15 \times 2.5) = 0 \text{ kN}$ $B = 0 \text{ kN}$ III) BM Calculation: BM at $B = 0$ (B is free end) $C = 0$ (No load from B to C) $A = -(15 \times 2.5 \times 1.25) = -46.875 \text{ kN-m}$	1	
		A C C C C C C C C C C C C C	1	4

Subject: Mechanics of Structures

Sub. Code: 22303 _____

Que.	Sub.	Model Answer	Marks	Total Marks
Q.4	(d)	Calculate the Euler's limiting value of slenderness ratio for which		1 1121 N 3
		it is not valid for long columns. Take $E = 2 \times 10^5 MPa$ & $\sigma = 320 N/mm^2$		
		Take $E = 2 \times 10^{-10}$ with $a_1 \propto 0_{\rm C} = 52010$ min		
	Ans.	Data: $E= 2x10^5 MPa$, $\sigma_c=320 N/mm^2$		
		r mu. <i>N</i> limiting		
		For long column, Euler's formula,		
		$\mathbf{P} - \frac{\pi^2 \text{EImin}}{\pi^2 \text{EImin}}$	1	
		$\Gamma_{\rm E} = \frac{\Gamma_{\rm E}}{\left(L_{\rm e}\right)^2}$		
		But $K = \sqrt{\frac{I}{\Lambda}}$		
		$K^{-}=-$		
		$I = AK^{2}$	1	
		$P_{\rm E} = \frac{\pi \ {\rm E} \times {\rm A} \times {\rm K}}{\left({\rm L}_{\rm c}\right)^2}$		
		$P_{\rm E} - \pi^2 E$		
		$\overline{A} = \frac{\overline{Le}}{\left(\frac{Le}{m}\right)^2}$		
		(\mathbf{K}) $\pi^2 \mathbf{E}$		
		$\sigma_c = \frac{\pi L}{(\lambda)^2}$		
		$\left(\lambda\right)^2 = rac{\pi^2 \mathrm{E}}{\sigma}$		
		$\pi^2 \mathbf{E}$		
		$\lambda = \sqrt{\frac{\pi - L}{\sigma_c}}$		
		$\lambda = \sqrt{\frac{\pi^2 \times 2 \times 10^5}{\pi^2 \times 2 \times 10^5}}$		
		$\int_{-\infty}^{\infty} \sqrt{320}$		
		$\frac{101 \text{ column to be sale}}{\left(\pi^2 \times 2 \times 10^5\right)}$		
		$\sqrt{\frac{\kappa + 2 \times 10}{320}} \leq \lambda$		
		$78.54 \leq \lambda$		
		Thus Euler's limiting value is 78.54. If it is less than 78.54 Euler's formula	1	4
		for long column is not valid.		
		OUR CENTERS : KALYAN DOMBIVLI THANE NERUL DADAR	Page	No. 13 / 2

Subject: Mechanics of Structures

Sub. Code: 22303 -----

Δ

lo

DDDC DEGREE & DIPLOMA ENGINEERING

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.4	(e)	Calculate the crippling load by Rankine's formula for a hollow circular column of 300 mm external diameter and 200 mm internal diameter. Unsupported length of the column is 4.2 m. If (a) both ends are fixed and (b) both ends are hinged. Take σc = 550 N/mm ² , a= (1/1600)		
	Ans.	Data: L= 4.2m, a)Both ends are fixed., b) Both ends are hinged $\sigma c=550$ MPa, $a = \frac{1}{1600}$ Find: P _R		
		$A = \frac{\pi}{4} (D^2 - d^2) = \frac{\pi}{4} (300^2 - 200^2) = 39269.91 \text{mm}^2$ $Imin = \frac{\pi}{64} (D^4 - d^4) = \frac{\pi}{64} (300^4 - 200^4) = 319068003.9 \text{mm}^4$ $K_{min} = \sqrt{\frac{Imin}{4}} = \sqrt{\frac{319068003.9}{4}} = 90.138 \text{mm}$	1	
		$K_{\min} = \frac{\sqrt{D^2 + d^2}}{4} = \frac{\sqrt{300^2 + 200^2}}{4} = 90.138 \text{mm}$ $\lambda = \frac{\text{Le}}{K_{\min}}.$	1	
		Case a) $Le = \frac{L}{2} = \frac{4200}{2} = 2100 \text{mm}$ Case b) $Le = L = 4200 \text{mm}$ Case a) $\lambda = \frac{2100}{90.138} = 23.297$ Case b) $\lambda = \frac{4200}{90.138} = 46.595$	1	
		By using Rankine's Formula, $P_{R} = \frac{\sigma_{c}A}{1+a\lambda^{2}}$		
		Case a) $P_{R} = \frac{550 \times 39269.91}{1 + \left(\frac{1}{1600}\right) \times 23.297^{2}} = 16127647.85 \text{ N} = 16.13 \times 10^{3} \text{ kN}$	1	4
		Case b) $P_{R} = \frac{550 \times 39269.91}{1 + \left(\frac{1}{1600}\right) \times 46.595^{2}} = 9163741.91 \text{ N} = 9.16 \times 10^{3} \text{ kN}$		
		KALYAN DOMBIVLI THANE NERUL DADAR Contact - 9136008228	age No. 14	4 / 22

Sub. Code: 22303

Subject: Mechanics of Structures

Sub. Code: 22505

Que. No.	Sub. Oue.	Model Answer	Marks	Total Marks
Q.5		Attempt any <u>TWO</u> of the following :		(12)
	(9)			
	(a)	Draw shear force and bending moment for simply supported		
		1.5 kN		
		2 kN/m 30 kN/m		
		2 m - 2 m - 4		
	Ans.	I) Reaction Calculation:		
		$\sum M_A = 0$		
		$R_B \times 5.5 = (2 \times 2) \times 1 + 1.5 \times 2 + 30$	1	
		$K_{\rm B} = 0.72 \rm KN$		
		$\sum_{R_{A}+R_{P}} = (2 \times 2) + 1.5$		
		R_{A} = -1.22kN		
		II) SF Calculation:		
		SF at $A = -1.22$ kN		
		$C_L = -1.22 \cdot (2 \times 2) = -5.22 \text{kN}$		
		$C_R = -5.22 - 1.5 = -6./2 \text{KIN}$	1	
		$B_{L} = -6.72 + 6.72 = 0 \text{ kN} (: \text{ ok})$		
		III) BM Calculation:		
		BM at A and $B = 0$ (:: Supports A and B are simple)		
		$C = -1.22 \times 2 - (2 \times 2) \times 1 = -6.44 \text{kN-m}$	2	
		$D_L = 6.72 \times 2.5 - 30 = -13.2 \text{kN-m}$	-	
		$D_R = 6.72 \times 2.5 = +16.8$ kN-m		
		1.5 KN 20 KN-M		
		A protocology B		
		RA 2m 1 1m 2.5m RB BEAM		
		A C P B		
		SED (KN)		
			1	
		6·72 6·72		
		16.8		
		A C 🕀 BMD (KN-m)		
		CURVE 6.44 D B	1	6
		Straight Line 13-2		
		OUR CENTERS :		

KALYAN | DOMBIVLI | THANE | NERUL | DADAR Contact - 9136008228

Model Answer: Summer-2019

Sub. Code: 22303

Subject: Mechanics of Structures

Que. No.	Sub. Oue.	Model Answer	Marks	Total Marks
Q.5	(b)	Draw shear force and bending moment diagram for cantilever		
		span. Vertically downward point load of 100 N at its free and		
		clockwise moment of 50 Nm at its mid span.		
	Ans.	A 2.5 m b 2.5 m A		
		I) Reaction Calculation:		
		$\sum Fy = 0$		
		$RA = 15 \times 5 + 100 = 175N$		
		II) SF Calculation:		
		SF at $A = +175N$	1	
		$B_L = +175 - (15 \times 5) = +100N$		
		B = +100-100 = 0N (.:. ok)		
		III) BM Calculation:		
		BM at B = 0 kN-m (\therefore B is Free end) C = 100×2.5 15×2.5×1.25= 206.875 N m	2	
		$C_R = -100 \times 2.5 - 15 \times 2.5 \times 1.25 = -290.875$ N-m		
		$A = -100 \times 5 - 15 \times 5 \times 2.5 - 50 = -737.5 \text{N-m}$		
		15 N/m 50 N-m 100 N		
		A Jana B		
		RA 2.5 M 2.5 M BEAM		
		175	4	
		•	1	
		A C B		
		A C B	•	r.
		@ 296.88 CURVE BMD (N-m)	L	0
		346-88		
		CURVE		
		737.5		
		OUR CENTERS :		
		KALYAN DOMBIVLI THANE NERUL DADAR	Page	No. 16 / 22

Contact - 9136008228

Model Answer

Total

Sub. Code: 22303

Marks

Subject: Mechanics of Structures

Que.

Sub.

No.	Que.	Model Answer	NIALKS	Marks
Q.5	(c)	A simple supported beam of span 6 m carries udl of 10 kN/m upto		
		2 m and couple of 5 kNm (clockwise) at 3 m respectively from left		
		side support. Draw SFD and BMD with appropriate calculation.		
		10KN/m 5kN-m		
	Ans.	A promotion D		
		I) Reaction Calculation:		
		$\sum M_A = 0$		
		$\mathbf{R}_{\mathbf{B}} \times 6 = (10 \times 2) \times 1 + 5 \therefore \mathbf{R}_{\mathbf{B}} = 4.17 \mathrm{kN}$	1	
		$\sum Fy = 0$	-	
		$R_A + R_B = 10 \times 2$		
		$R_A + 4.17 = 20 kN$: $R_A = 15.83 kN$		
		II) SF Calculation:		
		SF at $A = +15.83$ kN		
		$C = +15.83 - (10 \times 2) = -4.17 \text{kN}$	1	
		$B_{L} = -4.17 kN$		
		B = -4.17 + 4.17 = 0 kN (: ok)		
		III) BM Calculation:		
		BM at A and $B = 0$ (::Support A and B is simple)		
		$C = +15.83 \times 2 - (10 \times 2) \times 1 = +11.66 \text{ kN-m}$		
		$D_L = +15.83 \times 3 - (10 \times 2) \times 2 = +7.5 \text{kN-m}$	1	
		$D_R = +15.83 \times 3 - (10 \times 2) \times 2 + 5 = +12.5 \text{kN-m}$		
		IV) Maximum BM Calculation:		
		SF at $E = 0$		
		15.83 - 10 $x = 0$: $x = 1.583$ m from support A	1	
		$BM_{max} = +15.83 \times 1.583 - (10 \times 1.583) \times 0.7915 = +12.53 \text{kN-m}$	1	
	1			

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.5	(c)			
		A P		
		$A = \frac{15 \cdot 63}{ \mathbf{x}^{\pm} \cdot 1 \cdot 583_{m} } = \frac{BEAM}{4.17}$ $BEAM$ $BEAM$ $BEAM$ $BEAM$ $BEAM$ $BEAM$ $BEAM$ $BEAM$ $C = C$ B $C = D$ B $C = C$ $C = B$ $C = C$ C	1	
		$\begin{array}{c} 12.53 \\ \textcircled{0}{} \\ H \\ $	1	6

Subject: Mechanics of Structures

Que. No.	Sub. Oue.	Model Answer	Marks	Total Marks
Q.6	(Attempt any <u>TWO</u> of the following :		(12)
	(a)	A simple supported beam of span 6 m carries two point loads 18 kN with 2 m spacing and symmetrical to span. Design square beam for bending if maximum bending stresses in beam is 10 N/mm ² .		
	Ans.	Data: L=6m, W ₁ =18kN, W ₂ =18kN, σ_b = 10N/mm ² , b = d Find: b, d		
		RA=RB=18kN (Due to symmetry)		
		$M_{max} = M_C = M_D = 18 \times 2 = 36 \text{ kN-m} = 36 \times 10^6 \text{ N-mm}$	1	
		$I = \frac{bd^3}{12} = \frac{b^4}{12}$	1	
		$Y = \frac{d}{2} = \frac{b}{2}$	1	
		$\frac{M}{I} = \frac{6}{Y}$	1	
		$\sigma = \frac{M}{I} \times Y$ (36×10 ⁶)		
		$10 = \frac{(30 \times 10^{\circ})}{\frac{b^4}{12}} \times \frac{b}{2}$	1	
		$10 = \frac{\left(36 \times 10^6\right)}{b^3}$		
		$\overline{6}$		
		$b^{3} = \frac{(36 \times 10^{\circ})}{10} \times 6$	1	
		$b^{3}=216\times10^{3}$		
		b=278.495mm		
		d=278.495mm	1	6

Model Answer: Summer-2019

Sub. Code: 22303

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	(b)	Draw shear stress distribution along cross-section of circular beam for 300 mm diameter carrying 400 kN shear force. Also determine the ratio of maximum shear stress to average stress.		
	Ans.	Data- d = 300mm, S=400kN		
		Find- $\frac{q_{max}}{q_{avg}} = ?$		
		$R = \frac{d}{2} = \frac{300}{2} = 150 \text{mm}$		
		$A = \frac{\pi}{8} \times d^2 = \frac{\pi}{8} \times (300)^2 = 35342.92 \text{mm}^2$		
		$\overline{Y} = \frac{4R}{3\pi} = \frac{4 \times 150}{3 \times \pi} = 63.662 \text{mm}$ $h = d = 300 \text{mm}$	1/2	
		$I = \frac{\pi d^4}{64} = \frac{\pi \times (300)^4}{64} = 397607820.2 \text{mm}^4$	1	
		$q_{max} = \frac{SA \bar{Y}}{bI}$	1	
		$q_{max} = \frac{400 \times 10^3 \times 35342.92 \times 63.662}{300 \times 397607820.2} = 7.545 \text{N/mm}^2$	1	
		$q_{avg} = \frac{S}{A} = \frac{400 \times 10^3}{\frac{\pi}{4} \times (300)^2} = 5.66 \text{N/mm}^2$	1	
		Ratio= $\frac{q_{max}}{q_{avg}} = \frac{7.545}{5.66} = 1.33$	1/2	
		N A 300 mm Cross-section Cross-section A A 300 mm Cross-section Cross-section Cross-section Cross-section	1	6

Subject: Mechanics of Structures

_ _

Sub. Code: 22303 _____

Q.6	(c)	Draw shear stress distribution along of beam for L section with 75 x 12mm in flange and 100 x 15 mm in web carrying 60kN shear force. Data: W= 60kN, Flange: 75mm x 12mm, Web; 100mm x 15mm.		
	Ans.	Data: W= 60kN, Flange: 75mm x 12mm, Web; 100mm x 15mm.		
		Flange 100mm Flange 100mm C Flange 12mm 12mm 12mm 12mm 12mm 12mm 12mm 12mm		
		F[]G		
		$a_1 = 15 \times 88 = 1320 \text{ mm}^2$		
		$a_2 = 72 \times 12 = 900 \text{mm}^2$ $a_2 + a_2 = 1320 + 900 - 2220 \text{mm}^2$		
		$v = \frac{88}{44} = 44$ mm		
		$y_1 - \frac{1}{2} - \frac{1}{2}$		
		$y_2 = 88 + \frac{12}{2} = 94$ mm		
		$\overline{Y}_{\text{base}} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(1320 \times 44) + (900 \times 94)}{2220} = 64.27 \text{ mm from base}$	1	
		$h_1 = 64.27 - \frac{88}{2} = 20.27 \text{ mm}$		
		$h_2 = 23.73 + \frac{12}{2} = 29.73 \text{mm}$		
		$\mathbf{I}_{\mathrm{NA}} = \left(\mathbf{MI}\right)_{\mathrm{I}} + \left(\mathbf{MI}\right)_{\mathrm{II}}$		
		$\mathbf{I}_{\mathrm{NA}} = \left(\mathbf{I}_{\mathrm{G}} + \mathbf{A}\mathbf{h}^{2}\right)_{\mathrm{I}} + \left(\mathbf{I}_{\mathrm{G}} + \mathbf{A}\mathbf{h}^{2}\right)_{\mathrm{II}}$		
		$I_{NA} = \left(\frac{bd^3}{12} + (b \times d) \times h^2\right)_{I} + \left(\frac{bd^3}{12} + (b \times d) \times h^2\right)_{II}$		
		$I_{NA} = \left(\frac{15 \times 88^{3}}{12} + (1320) \times (20.27)^{2}\right)_{I} + \left(\frac{75 \times 12^{3}}{12} + (900) \times (29.73)^{2}\right)_{II}$		
		$I_{NA} = (1394192.228)_{I} + (806285.67)_{II}$		
		$I_{NA} = 2200477.838 \text{mm}^4$		
		$q_0 = 0$ At top and bottom of section.		
		$q = \frac{SAY}{hI}$		
		OUR CENTERS :		

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q.6	(c)	$q_1 = \frac{60 \times 10^3 \times 75 \times 12 \times 29.73}{75 \times 2200477.838} = 9.73 \text{ N/mm}^2$	1	
		$q_2 = \frac{60 \times 10^3 \times 75 \times 12 \times 29.73}{15 \times 2200477.838} = 48.64 \text{ N/mm}^2$	1	
		$q_{(\text{max})} = \frac{60 \times 10^3 \times (75 \times 12 \times 29.73 + 15 \times 23.73 \times 11.815)}{15 \times 2200477.838} = 56.32 \text{ N/mm}^2$		
		OR $q_{(\text{max})} = \frac{60 \times 10^3 \times 15 \times (64.27 \times 32.135)}{15 \times 2200477.838} = 56.32 \text{ N/mm}^2$	1	
		15×22004/1.838	1	6